
On Error Analysis of High Data Rate,  Optical Parallel Processors 

Deborah J. Jackson 

Jet Propulsion Laboratory 

California Institute of Technology 

Pasadena CA 91 I09 

Mario L. Juncosa 

RAND Corporation 

Santa Monica CA 90407 

Abstract 

Optical parallel processors have the potential for aiding the transfer of 

information over networks. This exploratory study examines the systems implications for 

a baseline architecture employing spatial light modulators (SLM), lenses, and charged 

coupled devices (CCD). Specifically, this study categorizes potential error sources - 

both  random and systematic error sources - and presents the results of an error analysis 

for a pixel-to-pixel mapping system. 
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On Error  Analysis of High Data  Rate, Optical Parallcl Processors 

1.0 Introduction 

Recent advances have  led  to faster, more  reliable spatial light modulators (SLM), 

thereby opening up the  possibility of achieving real-time processing at high data rates via 

space division multiplexing (SDM) in photonic architectures. Possibilities may  include 

the use of SLMs in tandem. Several general classes of applications can benefit from such 

an architecture. For example: 

High-speed optical routers. 

high speed optical encryption. 

Figure 1 illustrates a baseline architecture that is useful in evaluating the random 

bit error rate (BER) issues for both application areas. In fact, the general purpose of this 

paper is to classify and examine both random and systematic error sources and to present 

formulas for their quantification. In all cases, the  input  and output configurations at 

SLMl and CCD1 are the same. In addition, SLMl  and CCD1 are also assumed to have 

identical N x N array sizes and pixel pitches, such that one-to-one mapping takes place 

from input to output. 

Incidentally, we also note here the option of storing an n-ary character in each 

pixel - instead of using a 1-bit character -to further increase the throughput rate. Thus, 

a high-rate input-data stream is fanned out into a two-dimensional image format, as is 

shown in Figure 2. 

In image format, each bit is read into the SLM  array pixel by pixel, line by line. 

The bit sequence read into the jk" pixel determines the SLM phase, 6jk ,  such that the 

spatial phase variation or the readout from the SLM contains the reformatted digital input 

word. 
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Assuming an input data rats DR,,,,t 2 40 Gbps,  fanning  the data stream out  into a 

two-dimensional  array  for processing permits  one to slow the clock rate down at SLMZ. 

This tactic  can  be  used  to accommodate the  intrinsically  slower device speeds of the  less 

mature SLM devices. The SLMz clock rate, CLK, is  governed by the data rate of the 

input data stream, the  array size, and the grayscale index at the  pixel level. Hence,  the 

slowest possible clock  rate permissible at SLM2 is 

CLK = -. D'input 

NxNxn 
Equation 1 

Of course, this relationship holds true  only if a single parallel operation is 

required at SLM2 to  permute or encrypt the full input frame. If more than one  operation 

is required, the minimum clock rate is actually 

Equation 2 

where #OPS is the number  of logic operations performed in parallel. 

At  SLM2, the optical-processing modulation input varies with each application. 

For example, in  the high-data-rate optical-router application, each row in SLMl is loaded 

with packets arriving in  parallel for different destinations, as designated by the packet's 

header. SLM2, therefore, is loaded with a hologram that permutes the order of the rows 

initially loaded into SLMl to a different order at the CCD1 output. In the encryption 

application, the phase information loaded into SLMl is scrambled by adding random 

phase  to each pixel  at SLM2. Such an encryption architecture permits the use of 

extremely large encryption  keys. 

Each application has  very different BER requirements that  must be met  for a 

single stage of the  baseline configuration, as is shown, for example, in Table 1. 

Moreover, for both of the  cited application examples, the more interesting problems can 

be addressed by cascading  multiple stages of the  baseline configuration'. Consequently, 



it  is important to determine  how  much  information is  lost or corrupted  each  time one 

passes  through  the  baseline  stage. 

2.0 Error Analysis 

An error is defined as  an instance  where  one character is mistaken for another  (for 

example, 1 for 0). For  applications  such  as  transmitting cryptotext, numerical-valued 

data, or similar material  that  has  little  or  no  redundancy, clearly, the  systems  employed 

- optical  and  otherwise - must  have  extremely low tolerances  for error. Errors fall into 

two classes: random errors or statistical errors;  i.e.,  noise and systematic,  or  bias, errors. 

For a successful system design, a careful error analysis - such as the one that follows - 

is a prerequisite. 

2.1 Random Errors 

Random errors,  which can have  several causes, are not individually  predictable; 

instead, random errors can be  predicted  statistically at some level of confidence and are 

usually  quantified  by the variances of their  particular  probability  distributions. 

Considering the flow as photonic, the distribution of the flow and of the 

accompanying  errors is Poisson;  however, for large  Poisson  parameter  values or errors in 

the intensity  flow, the Gaussian  (normal)  distribution  probably  suffices.  Thus, the 

random errors are measured as bit error rates (BER), which are actually the probabilities 

of error (POE) of  encountering a misrepresented  bit or character. These POEs are the 

extreme tails of  normal  distributions  whose  variances are determined  by the noise  levels. 

The BERs  or POEs are  obtained from basic  statistical  decision  procedures. 

Although BERs and POEs are  general,  we  consider  for a definite example the case where 

the  distribution is Gaussian (see. Figure 3). To begin  with, we illustrate  the  binary 

decision case; i.e., a 1-bit  grayscale  level  with  two  possible  signals: 0 and  1.  With 0 the 
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mean of one  probability distribution and I the  mean of the  other distribution, the 

respective  probability densities overlap. A decision  point, D, is chosen such  that 

If  an observed simple falls  to  the  left of D, the decision calls for  the 

signal to be classified as a 0. 

If an observed  sample falls to  the  right of D, then  the signal is to  be 

classified as a 1. 

However, because  some of the “0” probability density falls on the “1” side of the 

decision p,oint,  and  vice versa, there is a small  possibility  that a zero bit  will  be 

erroneously read as a one,  and  vice  versa. The POE used for this determination is, thus 

where 

D - si 
oi 

Qi = - ; i=O,1 Equation 4 

s1 (so) is the expected value of the signal associated with a 1 (0), ol (0,) is its standard 

deviation, and D is the decision point set by the  optical receiver in the imaging  plane. 

The decision point is equal to (so + s1)/2 when the standard deviations, oi, are  equal. 

When the standard deviations are unequal, then D is chosen so as to make the  areas of the 

two tails in Equation 3 equal. 

In a situation where  each pixel is  used  to  detect an n-bit grayscale, Equation 1 

must  be generalized to the following 
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where 

and Di is chosen following  the same rules  mentioned  above in the case where n = 1. We 

ignore  the  infinitesimal  probability of mistaking  the  nonadjacent grayscale values. 

If there is an n-bit  grayscale  level  and  the  error  probability distributions associated 

with  the  different  gray  levels  differ  only  in  their  mean  values,  this expression is 

simplified  to 

OI 

POEn.+it = (2' - I)[ ex(-:).']. Equation 7 
Q i  

This equation demonstrates  that  going  to a higher  grayscale always increases the 

POE. -Furthermore, the detection at the CCD is not  linear  in the phase; therefore, the 

probability  distribution  varies from level to level  within the grayscale. Thus, once n is 

selected, the distribution  and  decision points should  be  customized for each level. 

The same error sources show up after transmission  and decryption of  the message. 

Thus, the anticipated  probability of error for a complete encryptioddecryption cycle is: 

PoEencrypt+decrypt = 2( ' O E n - b i t ) .  Equation 8 

This assumes that the chosen transmission  protocol  permits  essentially  "perfect" 

transmission  over the network;  therefore,  that  segment  can  be  ignored. 

Because  the most commonly  encountered graphs for  POEs run up to a limit of 

lo"', with the aid  of some probability tables dating  back  to the 1940s2, we extended  the 

graph  up  to a limit  of  (see  Figure  4). 
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The characteristic figure of merit for most  systems transmitting or emitting 

something is  the signal-to-noise level, S/N, at  the  receiver. Thus, here one needs a 

measure of the  intensity of light at the  receiver  and  the  intensity of the noise  from  all 

sources, equipment as well as environment. 

The principal  random noise contributions are: thermal noise, shot noise, relative 

intensity noise (RIN), and  noise  internal  to the SLMs themselves. For a single detector, 

the ratio of the total  received photocurrent, IO, one must  be able to detect the intensity 

associated  with  the minimum phase increment Imin = I,, sinb/2(2" -l)] with good signal 

to noise. The ratio of the minimum signal to  the  noise  due to the first three noises at the 

imager  is given by3 

Equation 9 

where B is the bandwidth, ne2 = 4kT/  Rl is the preamplifier-equivalent input-noise 

current, k is Boltman's constant, T  is the ambient absolute temperature, RI is the input 

impedance of the preamplifier, e is the electric charge, and m  is the modulation depth. 

In the special case when n = 1, we find that Imin simplifies to IO. The first term in the 

denominator is the thermal noise contribution from the resistance at the preamplifier 

input. 
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The second term in the  denominator is the  contribution  from  the shot noise. 

The third  term in the  denominator  is  due  to  the  relative  intensity noise (RIN or amplitude 

tluctuations of the  laser. 

Generally, for CCD detector arrays, the  noise  is determined by the  thermal  noise 

of the amplifier circuit; therefore, no attention is  paid  to  noise variations due  to  the  light 

source. However,  the  second and third  terms  become  much  more  important  for  our 

application where  the absolute intensity of the light  source is needed to discern  the  phase 

angle  upon  capture at the CCD. Because  both  spatial  and temporal variations effect the 

bit error rate, controlling these variations becomes a significant concern in this 

application. 

Assuming  that  stray light is at levels considerably below the noise from the above 

sources and  that there are  no correlations between  the different noise sources, we  have  for 

the variance of the total noise3 

There has not 

8kTB oi = -+ 4eBImin + 2BIi in  (RIN) +os,, , 2 
n Equation 

been an extensive history  of  error  modeling and verification with 

the SLM. Consequently, the Gaussian or  approximately Gaussian nature of the SLM 

noise sources needs  to  be  verified  before it can be  assumed in Equation 13. The 

distribution of error  due  to the SLM itself  may  not  be Gaussian. Consequently, the total 

variance  would  not  be a variance associated  with a Gaussian distribution. If  the  SLM 

error distribution were  Gaussian or approximately  Gaussian, the total variance above 

would also be so and the POEs - or, equivalently, the  BERs - can be determined by 

Equation 13. If  the SLM is  well  behaved (that is, the SLM’s noise variance is  negligible 

compared to the shot noise,  thermal  noise,  and  laser  noise  terms),  we can calculate 

representative numbers  for  the error probabilities due  to  random noise sources. The 

10 
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representative numbers are inferred  from  the  values of Q calculated in Table 2 as a 

function of the n-bit grayscale level using  the  following expression 

a,2 = E + 4eBI,,, + 2 BI;,,, ( R I N )  . 
R, 

Equation 11 

The results in Table 2 are based on the following assumptions: 

0 100,000 framedsecond throughput rate. 

0 12.8 MHz line rate. 

0 128 x 128 readout CCD array. 

0 200,000 electrondpixel well-depths, representing a line current, 

10 = 0.41 pAmps. 

0 Bandwidth = 108 MHz. 

0 RIN = - 160 dBc/Hz 

Thermal, shot, and RIN noise distributions are Gaussian or 

approximately so. 

SLM random noise is much less than the shot-noise term. 

Measurements taken in  the  linear part of the curve*. 

This  assumption  implies that the  discretization  discussed in Section 3.4 is achieved  by  having  adjacent 

rows  contain  the same  phase  information, but offset by 71/4 so that one row or the  other will always yield 

intensity  values from the  linear part of the  curve. 
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In Table 2, the Q is calculated by assuming that  the SLM noise contribution in 

Equation  13 is negligible. Clearly, when n = 1 and  the  maximum  line current is 

0.41 pAmps, the  noise  is dominated by the  photon statistics of the shot noise  term.  With 

a Q of roughly 77, the probability of misreading a bit is negligibly small. Of course, as 

one goes to finer and finer grayscales, the  random  noise contribution to the least 

significant bit increases because the information in each bit is conveyed by fewer and 

fewer electrons. However, even a 7-bit grayscale provides a POE or anticipated BER of 

Again this implies that there is a large trade space  for designing the hardware for 

this application. The above treatment assumes that all the noise-source contributions in 

Equation 13 are approximately Gaussian in behavior. However, the liquid crystal SLMs 

that have been characterized in the literature thus far do not adhere to this ideal behavior. 

The only data we found were three liquid crystal SLM designs in  a 1995 thesis by 

M~rel l i .~ .  Morelli’s results show graphs with  distinctly non-Gaussian characteristics, 

which he attempted to model by developing empirical fits to the data. Some graphs show 

a nearly periodic behavior superposed with noise; others graphs show unusual jumps 

superposed with noise. Morelli conjectures5 that the non-Gaussian characteristics may  be 

due to some internal transitions in the liquid crystals under the influence of external 

fields; as deterministic phenomena, these transitions may  be removed through calibration 

leaving the random noise component. 
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I f  this  remaining  component is Gaussian  (and  reasonably  assumed to be 

uncorrelated  with  the others), then its variance  can be incorporated  with  the others to give 

a total  noise  that  would be Gaussian. If the  remaining  component  is  not  Gaussian  but 

quite  small in variance  when compared to the  other  noise  sources,  then  it  may be ignored. 

If the  remaining  component  is  large  in  variance  compared  to  the  thermal  noise,  shot 

noise,  and RIN noise,  those  noise  terms  can  be  ignored. Consequently, one is left  with 

determining an accurate  empirical  distribution  to  measure tails on the error terms  well 

enough to get a POE or BER  that is credible - a decidedly  difficult task. If the SLM’s 

residual  random error component is comparable  to  the  total variance of the other noise 

terms, then a convolution of a Gaussian with some non-Gaussian empirical distribution 

must  be  obtained  with  sufficient  accuracy in the  tails  to produce credible POEs or BERs. 

Again,  because  of  the  stringent BER demands this task is expected to be  difficult. 

It  should  be  emphasized that the recent  developments  of  micro-electromechanical 

devices (MEMS) SLMs  may  offer the possibility  of  observing  more  Gaussian-like 

distributions in the SLM  noise  variance. It is clearly critical that an analysis of the noise 

characteristics  of  MEMS  SLMs or any others that may develop be carefully determined 

to be Gaussian before  casually using Equation 13 to add to the thermal  noise, shot noise, 

and RIN noise  components of the total noise  distribution  variance. 

2.2 Systematic  Error  Sources 

Lens characteristics  and the relation of the  lenses to  the  SLMs are the main source 

of  systematic error. Some of the  systematic error is  likely  to be removed by calibration. 

Among  the  potential sources for  systematic  error  are  propagation losses due to the finite . 

lens  diameter  relative  to  the  active  fields of the  SLMs. 
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A concern is that  information can be truncated by the  lens pupil. Other concerns 

include spherical aberrations due to  the  lenses, interaction between spherical aberration 

and  the fill factors of the SLMs, and truncating effects of aperture stops. 

2.2. I Truncating EJtjrects of Lens Pupil Size 

The pixel-to-pixel mapping case is treated  in Appendix A, where we derive a 

formula for the  maximum SLM diagonal, d,,,, such that a marginal  ray fiom a comer of 

a hypothetical SLM  would  touch  the lens diameter (pupil), D, refract, and reach a second 

identical SLM at the same comer. Figure A.l of Appendix A illustrates this pixel-to- 

pixel mapping. Clearly, any rays emanating fiom the first SLM above the marginal ray 

would  not intersect the lens. Moreover, the marginal ray does not image the first SLM’s 

pixel onto its proper pixel at the second SLM. The only rays that are imaged are  rays 

nearly parallel to the optical axis. Additionally, rays passing through the center of the 

lens would image in focus. Therefore, the marginal calculation is conservatively yielding 

a substantially larger diameter than required for the pixel-to-pixel operation. We assume 

a symmetric doubly convex lens with diameter D, a radius of curvature R, and an index 

of refraction n. Appendix A contains the derivation of dma. The result is 

1- Equation 12 

For example, if R = 15 cm, D = 3 cm, and n = 1.6, the calculated value for dm,  is 

1.432 cm.  For an SLM of  256 x 256 pixels and a pitch of 20 p (or 0.002 cm), the 

diagonal length of active field is 0.724 cm (slightly more than half of dm,,), 
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Considering the SLM as an aperture, there is a rapid intensity fall off from  the 

normal. Therefore, for relative dimensions approximately the same as these, we  can 

expect no influence of lens  pupil size at the  image plane. (This analysis is based  on 

standard Fraunhofer diffraction theory assumptions that appear in texts such as Born  and 

Wolf?) 

Although the derivations for the plano-convex lenses are much more algebraically 

complex than the symmetric doubly convex cases, one can expect similar results for 

similar optical component parameters. 

2.2.2 Spherical  Aberration  Considerations 

Again we examined a pixel-to-pixel mapping situation with spherical doubly 

convex lenses or with plano-spherically convex lenses with light rays incident on either 

side of the lens. (Figures B.l , B.2, and B.3 in Appendix B illustrate this example.) In 

particular, we were concerned with determining the errors of displacement transverse to 

the optical axis due to spherical aberration, which could cause spillover to neighboring 

pixels at the target SLM or CCD if sufficiently great. Formulas are derived for the rays 

emerging from the lens and focused toward the target SLM or CCD. The rays, or course, 

are considered parallel to the optical axis before entering the lens. The geometrical 

optics, algebra, and trigonometric manipulations are used to arrive at the derivations and 

formulas are detailed in Appendix B. 

We considered the  pixel of the originating ray to be at one of the four comers of 

the SLM because the greatest transverse displacement error would  be expected for the ray 

at  the focus and at the image plane. The off-axis deviations at two points - at the  lens 

focus and at  twice the focal length distance - were calculated for the cases of each lens 

situation. 
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We assumed SLM of 256 x 256 pixels  with a pitch of 20 microns (or 0.002 cm), a 

radius of curvature of 15 cm  for  the spherical faces  of  the lenses and a diameter of the 

lens  of 3 cm for  all three cases. The results of  our calculations are summarized in Table 

3 .  Using a thick lens formula  for  the focal length  would  make  very little difference in 

these results. 

What are the implications of the results in Table 3 for lens and SLM parameter 

choices? Assuming pixel-to-pixel mapping  with  similar parameters for the SLMs as for 

the CCDs: 

. In case (a) of our example, the size of  the transverse aberrations is 

unacceptable because of significant spillover to neighboring CCD 

pixels. The spillover is enough to make possible a distinct error (even 

in the' case of a simple binary grayscale). 

For case (b), if the grayscale levels do  not exceed four, the results are 

acceptable for application. At eight grayscale levels, the results would 

be marginal. 

For case (c), an n = 2 grayscale index  would  be the most one  would 

accept for applications. 

The fill factors of the SLM have some interaction with the aberration in affecting 

the results; the interaction between fill factors and aberrations will be discussed below. 

However, these cases indicate that aberrational effects are not negligible. Consequently, 

care in selecting the  physical parameters of all optical elements is important. 

The errors produced by observations due  to the spherical lens can be controlled by 

several means, including: 

Careful selection of lens radius of curvature andor diameter. 
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0 Use of commercial lens  designed to remove aberration. 

Adjusting  the size of the fill factor to diminish aberration-induced 

transverse spillover. 

0 Controlling the  half diagonal dimension of  the SLM and CCD. 

2.2.3 Fill-Factor Considerations 

The fill factor  of  an SLM or CCD is the square of  the  ratio of the pixel  width  to 

the pitch, thereby determining the fraction of the  SLM face that is active. Because we are 

re-imaging from SLMl to SLM2 and from SLM;! to CCD, in the pixel-to-pixel 

configuration, the size of the fill factors can be chosen to cancel out any transverse 

spillovers to neighboring pixels in the target SLM. Therefore, the fill factor can be  used 

to correct for the previously discussed transverse deviations caused by spherical 

aberrations of the lenses. There is clearly a trade-off between optimizing the active pixel 

area to optimize the signal intensity recovered at the pixel and reducing the fill factor to 

cancel the transverse spillover. As one goes to higher grayscale levels, absolute intensity 

becomes important in achieving good photon statistics, such that the spillover trade-off is 

much less desirable. In this situation, increasing the radius of curvature of the lens can be 

used to decrease the transverse aberration. 

To examine the effects of the interactions between aberration-induced spillover 

and fill factors of SLMs (see Figure 5), we treat the simplest case: a  case that assumes 

that the SLMs and the CCDs have the same pixel  number  and pitch lengths and that the 

CCDs have 100% fill factors. For  SLM 100% fill factors, there is significant loss due to 

the transverse spillover effect. However, as the fill factor decreases, the loss due to the 

transverse aberration continues, but the amount of spillover into adjacent pixels is 

reduced because some or all of the spillover falls into  the inactive area of the pixel. 
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Thc design optimization comes from  using Equation 17 and Equation 18  to 

determine the smallest active area that yields an acceptable capture of photon statistics 

with  minimum crosstalk among  the pixels. 

A combination of adjusting the f i l l  factor  and carefully selecting the  radii  of 

curvature on the  lens can be  used  to minimize spillover into adjacent pixels. In Figure 5, 

four pixels of a 100% fill factor CCD are represented, the lower left being  the intended 

recipient of the information from a pixel of an SLM  with a fill factor denoted by f. Both 

the SLM and the CCD have a pitch denoted by p. In the absence of aberration, regardless 

of the fill factor of the SLM, all information from the SLM pixel is captured by the 

intended target CCD pixel. The translation of the pixel under aberration due to the 

intervening lens the center of the SLM’s pixel information is given by coordinates (tb, fa) 

at the plane of the CCD (indicated by an arrow in Figure 5). Therefore, the area of the 

transformed pixel that overlaps with its target CCD pixel is given by 

“b=(P-It,l)(P“). Equation 13 

With a fill factor off  < 100% on the SLM, the amount of the original active area 

captured on the intended target pixel at the CCD is 

[ ‘)B ?I )( ? I)’ a - ( p / 2  1-f?  b - ( p / 2  1 - f 2  =ab-(a+b)(p /2  1 - f 2  + ( P / 2  1 - P  

Equation 14 

Consequently, the ratio of active area capture on  the target to the amount the CCD pixel 

would  have captured with an SLM fill factor of 100% is then 

This is clearly an increasing function off; i. e., the greater f is, the greater the  ratio 

becomes until f = 1 when  the  ratio  becomes 1. 
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In the other direction, the  ratio  becomes  zero  not  when f reaches zero, but,  instead, at a 

positive  value,  the greater of the  two 

[I - 2[(a  + b)  + ( ( u  + b)’ - ah):]]  or [ 1-2  [ ( a + b ) -  ( ( a  + h)‘ -ab): 
P P 

Equation 16 

The choice between  these equations is  dependent on the relative sizes of p and 2(a + b) ,  

the quantity with  the positive sign before  the  square  root if 2(a + b) > p and  the  quantity 

with  the negative sign before the square root. 

On the other  hand,  one can make a contrasting observation. Specifically, for 

modest displacements due  to aberration displacements (less than a pixel length), one  may 

require decreased fill factors to avoid information spillover (cross-talk) to pixels at the 

CCD that are neighbors  of the intended  target  pixel. Taking Figure 5 to illustrate the 

point, we  note that, for no spillover, the SLM’s inactive border must be broad enough that 

no part of the active area arriving at the CCD crosses the boundary of the intended 

receiving CCD pixel.  Clearly, for there  to be any active area at all, both a and b must  be 

greater than p/2; however, for definiteness with  no loss in generality, let us assume that 

p / 2 c a c b . For  no spillover to the upper left CCD pixel, the top border of  the SLM 

pixel’s inactive area must  be at least p - a wide.  With a conventional equal width 

inactive border on all sides of the active area,  the maximum active area without spillover 

is then ( p  - 2 ( p  - a))’ = (2a - p)’.  Such an active area implies a fill factor of 

I 

(2a - p)’ /p*  = (2a /p  - 1)*, which, in the  presence of aberration, is less than 100%. 
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With vertical components of the aberration-caused transverse displacement of the 

SLM pixel’s  image at the  CCD ofO.1 p, 0.2 p,  and 0.3 p, a = 0.9 p, 0.8 p, and 0.7 p, 

respectively, and resulting maximum fill factors of 64%,  36%, and 16%, respectively, we 

get no spillovers of active information to neighboring CCD pixels. 

Therefore, we conclude the following: in the light of the observations detailed 

above and considering the earlier numerical results regarding acceptability or non- 

acceptability of certain aberration distances (depending on the number of grayscale 

levels), the choice of parameters of elements in the design of an SLMs-lenses-CCD 

system for pixel-to-pixel mapping requires simultaneous consideration of several 

interacting factors. The choices can not be made considering each factor independent of 

the others. 

2.2.4 Aperture  Stops  and Stray Light Control Considerations 

In this section, stops are considered not as a source of error, but, instead, as one of 

the agents used to control error. An aperture stop could be used to facilitate incoherent- 

stray-light control. Placing an aperture stop between a lens plane and its image plane is 

particularly effective. The SLMs and CCDs considered are assumed to be square in their 

pixel field shape. The intent of this analysis is to determine the dimensions of a 

minimum admissible square aperture and the location of the stop. The findings are based 

on standard thin-lens ray-optics procedures that locate points on the image plane 

corresponding to points in the object plane in an aberration-free situation. The objects in 

the object and image planes can  be SLMs, CCDs, or other optical objects. 
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Figure 6 (which is  not  to scale) illustrates the setup in the analysis. In Figure 6, a 

stop is placed  between  the  lens plane and image  plane  and is parallel to  them. The SLMs, 

CCDs, and stops are centered on the lens' optical axis. The standard procedure for 

image-point locations is  to  follow  two  rays  from an object point to their coincidence at 

the  image plane. This is illustrated in Figure 6 by the  pair  of  rays from PI: one ray  passes 

through refraction at 01 and then on through the focus F to Q,, the other ray passes 

through 0, the center of the lens, and then on to Q1. The two  rays from P2 (P202Q2 and 

P2OQ 2) illustrate the same procedure. The length of the segment PlP2 is h,  the height of 

a side of the object SLM or CCD. Similarly, if p and q are the respective object and 

image distances from 0 (the center of the lens), the length of the segment 4142 is hq/p, 

the height of a side of the corresponding image. 

Our goal is for the intersection (yay Za) of the  ray segments 01Q1 and P2Q2, Ya to 

be the half height of the aperture and for za to be the location of the stop plane in a 

rectangular coordinate system with 0 as the origin. The equation of the line containing 

the segment 01Q1, from a consideration of similar triangles, is 

h y = - ( f  - z>,  
2 f  

Equation 17 

h y = - z .  
2 P  

Equation 18 

Solving these two equations for the intersection of  their two lines, we  get 

Y a  = hf ( P ' f )  Equation 19 

and 

z ,  = P f ( P +  f > .  Equation 20 
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Therefore, the  minimum aperture is a square  that is h f / ( p  + j ‘ )  on a side and  the 

stop plane is located  at a distance p f / ( p  + f )  from 0 between the  lens  plane  and  the 

image plane. 

In one-to-one pixel  mapping. p = q = 2 f ,  these results simplify to a square 

aperture of h/3 on a side with the stop placed  at a distance (2/3) f from 0 toward the 

image plane in  the  ideal  thin  lens aberration-free case. Additional stops with similar 

dimensions can be placed  with the additional lenses in  the baseline configuration. 

Even though the thin lens assumption is acceptable, we assumed an ideal 

situation; however, aberrations are to be expected. (The analysis quantifying the 

transverse deviations of  the  rays was treated in a preceding section and is treated further 

in Appendix B.) If the aberration-caused deviation errors are within acceptable bounds 

for any particular case, 2”* times these deviations must be added to the lengths of the 

sides of the aperture for the stop to be admissible. 

3.0 Summary and Conclusions 

Systematic errors, which are frequently bias errors or aberration errors for optical 

components, are caused by a variety of sources. Knowledge of the systematic errors is 

necessary to calibrate for the potential bias and to filter known perturbing periodicities (if 

the system possesses any). Ultimately, the objective is to adjust the design or select 

components so that systematic errors are far enough below the random-error contribution 

to the total error to be  ignored. Table 4 summarizes our findings with respect to the 

systematic error sources. 

It is anticipated that all of the systematic sources are either negligible or can be 

easily compensated for through calibration. The exception is  the contribution from 

scattered stray light; aperture stops can be  used  to  reduce  stray  light. The key, therefore, 

is careful design and quality control of the optical elements. 
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Random  noise contributions are  summarized in Equation 13; the analysis depends 

very closely on the  type of SLM chosen and  its  design details. In the data that  currently 

exists for  three different types of liquid  crystal SLMs, the noise variance is dominated by 

noise  caused by the SLM. In each case, these SLMs also exhibited enough o f a  non- 

Gaussian noise  variance  that it was clear that  detailed empirical fits to the distribution 

tails  would  be  necessary  to  give  meaning  to  error  probabilities  below  For  liquid 

crystal SLMs, the phase modulation is dependent on electrically induced refractive  index 

changes in the complex  liquid crystals. In all likelihood, the complex behavior observed 

in the variance is also due to higher order interactions of the electronic field with  the 

liquid crystal medium; these interactions limit the precision with which the phase  setting 

can be determined. Morelli  has determined that, using  the SLMs he tested, useful 

probabilities of errors would  be 1 O-'. Thus,  liquid  crystal SLMs  would not be  useful  for 

the  router or encryption applications under  consideration here, but could prove very 

useful in image correlation applications7  where the information contained in a single 

pixel is not as important as the relative distribution of information in adjacent pixels. 

Such higher-order effects are much less likely  to  be observable with the recently 

developed MEMS SLM devices. In fact, there is hope  that the noise variance in the 

MEMS SLMs will  not  only be Gaussian-like in behavior,  but also less than the shot noise 

contribution. This would  permit  one  to  use  Equation 13 without reservation; in that 

instance, BER performance below  could be expected  in applications such as high- 

speed  routers,  high-data-rate encryption, or cascading operations. The analysis clearly 

suggests that  in the physical  limit for the precision  of  optical computation will  be  due  the 

shot  noise  of  the optical source. This may  have  implications  for some  of the  quantum 

cryptography  models  that  are in the published  literature'. 
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APPENDIX A - Relation of Lens Diameter to SLM 

and  CCD Maximal Diagonal Dimensions 

Given a symmetric, doubly convex thin lens  with  radius of curvature, R, for each 

face, diameter, D, and index  of refraction, n, we consider pixel-to-pixel mapping from a 

square pixel array SLM to an SLM or a CCD  of  the same active field dimensions whose 

active field diagonal length is d. To determine whether there are errors introduced at  the 

receiving SLM or CCD due to lens pupil restrictions for the typical anticipated 

dimensions of our setup, we determine the maximum diagonal dimension of  the emitting 

SLM for a marginal ray  passing from the emitting SLM to the receiving SLM or CCD 

that intersects the lens infinitesimally close to its rim. 

From Figure A1 , assume a ray originating at P that is displaced from the optical 

axis but on the object focal plane. This ray intersects the lens at Q, a distance h (<D/2) 

from the optical axis, passes through the lens parallel to the optical axis, exits the lens 

again at Q' (also a distance h from the optical axis), and terminates at P' on the image 

focal plane. (Incidentally, P' is not the image of P) 

We later pass to the limiting position, where the intersection approaches the  rim 

of the lens (i.e., as h approaches D/2) to obtain an equation for the marginal ray. Our 

objective is to calculate the maximum diagonal dimension of the square active field of the 

SLM. The  ray's path is symmetric about the lens plane and parallel to the optical axis for 

the segment that is inside the lens. R is defined as the radius of curvature of the lens, D is 

the diameter of the lens, h is  the height of Q', B is the angle arcsin(h/R), and A is the 

angle between the normal to the lens surface at  point Q' and the outgoing ray, P'Q'. 
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Using  the  symbols  indicated in  Figure AI, we have  for  the  off-optical-axis 

distance, w, as a function  of  the  distance,  z,  from  the  lens center on the  optical axis, the 

following  equation 

(W - h)/(z - (R’ - h2)”’+ (R’ - D’/4)”2) = tan(A - B) Equation A 1 

or 

w(z) = h + (z - (R2 - h2)‘” + (R2 - D2/4)’”) tan(A - B). Equation A 2 

With  sin B = h/R and  Snell’s Law of Refraction, sin A = n sin B, we have 

[ 
1 

h n(1- h2/R2)? - (1 - nZh2/Rz)y 
tan(A - B)  = 1 I 1  . Equation A 3 1 

We now pass to the limit h + D/2 to  obtain the limiting value for tan(A - B), as 

follows 

1 

(D/2R)[  n(1- D2/4R2)? - (1 - nZD2/4Rz)? 
tan(A - B) = 1 1 ‘ I  

[(I - Dz/4RZ)?(l - nZD2/4R2)5 + n D2/4R2 1 
1 

(D/2R)[ n( I - nZD2/4R2)? - (1 - D2/4Rz)Z 

[I - ( n2 + 1) D‘/~R’] 
- - ‘1 Equation A 4 

This last  equation  results from rationalizing the denominator of the previous. The 

equation for the limiting  form of w(z),  which  becomes the ascending segment of a 

marginal ray, simplifies  to 

W(Z) = D/2 + z tm(A - B). Equation A 5 

Thus, we have at twice the focal  length  from 0, where for a thin  lens z = W(n - l), the 

following 

w(W(n - 1)) = D/2 - (W(n - l))tan(A - B). Equation A 6 
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As a consequence, we  have  for  the  maximum diameter of the SLM that  would  not suffer 

From a pupil  restriction  the  following 

dm,, = D { 1 - [n( 1 - n2D2/4R')"2 - (1 - D2/4R2)"2] / (n - 1)[ I - (n2 + 1)D2/4R2]}. 

Equation A 7 

For a reasonable  notional example where R = 15 cm, D = 3  cm, and n = 1.6, we 

get a value of '1.432  cm for d,,,. For an SLM of 256 X 256  pixels and a pitch  of  20  pm 

(or 0.002 cm), we  have  for  the diagonal length of the active field 0.724 cm, which is 

slightly  more  than  half of d,,,. Thus, we can expect no influence of the pupil size for 

dimensions approximately  the same as these. Examination of the situation for a plano- 

convex lens led to extensive algebraic manipulations because of the lack of symmetry; 

therefore, this investigation was discontinued. However, it is expected that the  completed 

examination would lead  to similar results for similar parameters for the items employed. 
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APPENDIX B - Aberration Error Due to a 

Spherical Lens  in a Pixel-to-Pixel Case 

Only  ray tracing with Snell’s law  for  refraction  and geometric (actually 

trigonometric) consideration is employed in deriving  the formulas for transverse 

deviations of the rays due to aberration. Symbols used are apparent in  their definitions 

from their appearance as labels in  Figure  B1,  Figure  B2, and Figure B3 whose lens 

representations are exaggeratedly thick for ease of depiction and labeling. The z-axis of 

the rectangular coordinates used coincides with  the optical axis of the lenses; the x- and 

y-axes are perpendicular to the optical axis; the symbol w = (x2 + y ) denotes the 

distance from the optical axis; values of h, the distance from the optical axis at which the 

incident rays meet the lenses, are particular values of w. The origin on the axis will  vary 

2 1/2 

according to the convenience best suited for each lens example. 

First, we consider the case of the doubly convex lens - a doubly convex lens will 

have the most involved derivation. The incident ray is refracted entering the lens at P, 

whose coordinates are (2R - T - (R2 - h2)l”, h),  where T is the lens’ thickness and equal 

to 2(R - (R2 - D2/4)’”). 

From this, the coordinates of P are (2R - 2(R2 - D2/4)’I2 - (R2 - h2)’”, h). The ray 

is again refracted as it emerges from the lens at Q, whose coordinates are ((R2 - k2)ln, k ), 

where k is to be determined. We seek an equation for the ray emerging from the lens at 

Q. The symbols used are defined  by their appearance on Figure B1. 
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To determine  k,  from  Figure B 1, we have 

h - k = [(R2 - k2)‘” + (R2 - h’)‘/’ - 2(R2 - @/4)‘’’] tan(61-0z).  Equation B 1 

Abbreviating by defining 

A = (2(R2 - D2/4)l/l - (R2 - h2)1/2)sin(01-02)  +hcos(01-02),  Equation B 2 

we have 

(R2 - k2)l”sin(01-02) = A - kcos(01-02).  Equation B 3 

We square and  rearrange terms in  the  resulting equation to  get a quadratic 

equation for k, as follows 

k2 - 2kAcos(01-02) + A2 - R2sin(01-02) = 0. Equation B 4 

Solving, we have 

k = Acos(01-02) - (R2 - A2)%in(0,-02), Equation B 5 

where  we have chosen the negative sign for  the  square  root in order for cos& to be a 

positive quantity. We  note that 03 is the acute  angle  between the line containing the  ray 

segment from P to Q and  the line containing the normal  to the lens at Q, its cosine being 

given by the inner  product  (dot product) of the  two-unit, normalized-coefficient vectors 

associated with these two lines. An equation for the line through P and Q is 

- z tan(01-02) - w + (2R - 2(R2- D2/4)’” - (R2 - h2>“)tan(01-02) + h = 0. 

Equation B 6 

An equation for the  line containing the normal  to  the lens at Q (i. e., containing 0 and Q) 

is 

k z - w (R2 - k2)1’2 = 0. 
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Therefore, with substitution of the expressions for (R2- k2)’/’ and k from above 

and  with  the abbreviation A, we  have 

cose3 = ((R2 - k2)1’2cos(BI-02) - k sin(01-02)) / R = (R2 - A’)”’/R 

Equation B 8 

and 

sine3 = A/R. Equation B 9 

As one can see from Figure B 1 , the slope of  the line containing the emergent ray 

at Q is - tan(04-8s). However, again from the figure and from geometric considerations, 

05+01 = &+€I2 or 05 = 03 + 02-01. Hence, 

tan(%-&) = [tan(&-&) + tan(el-e2)l [I - tan(e4-e3)tan(el-e2)1. 

Equation B 10 

Therefore, with Snell’s Law of Refraction, we have 

sin04 = n sin03 = nA/R Equation B 1 1 

and 

We also have 

and 

cos04 = (1 - n A /R ) . 2 2 2 112 Equation B 12 

sin (01-0,) = (h/R)((l - h2/n  R ) - (l/n)(l - h /R ) ) Equation B 13 2 2 1/2 2 2 10 

cos(01-02) = (1 - h /R ) (1 - h /n R,) + h2/nR2. Equation B 14 2 2 112 2 2 2 112 

This enables us to rewrite A in terms of  the  given quantities, R, h, and n,  as follows 

A=h[(2(1-D2/4R) 2 112 ((1-h2/n2R2)112-(l/n)(l-h/R) 2 2 112 )+l/n]. 

Equation B 15 
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We can also define k as 

k = A(( 

- h(1 

1 - h2/R2)’I2( 1 - h /n’R‘) + h2//nR2) 

- A’/R’)‘” (( 1 - h /n 2R’)”2 - (l/n)( 1 - h /R ) )). 

2 ’ ’ 112 

2 2 112 

Equation B 16 

Furthermore,  using  the  above  trigonometric  equations  relating 04 and 03 to A, R,  and n, 

we  get 

tan(e4 - e3) - L 1 J 

- [ R( 1 - A2/R2)?(  1 - n2A2/R2) i  + n A2/R2 
1 1 

=A[n( l -nA/R)   - ( l -A /R)   ) ] /R[ l - (n2+1)A/R] .  2 2 2 112 2 2 1n 2 2  

Equation B 17 

where the latter  equation is obtained by rationalizing the denominator of the former 

Similar  manipulations  using the above trigonometric equations relating 01-02 to h, R, and 

n yield 

[ 
1 

h n( 1 - h2/n*R2)i  - (1 - hZ/R2) i  
tan(@, - e2) = 1 I l l  

n(1- h2/n2R2)i(l - h2/R2)y + h2/R2 1 
h[(l- h2/R$ - (l/n)(l- h’/n”R2)1 

- L  J - 
R[1- (n’ + l)h’/n2R2] 

Equation B 18 

where again we rationalized  the  denominator. 
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These  two  tangent  relations enable one to evaluate, in terms of the  given 

quantitics, the slope, -tan(e~-Os), of the  line  containing  the emergent ray at Q, as follows 

w = k - (z - (R2 - k2)"2)tan(8J-85).  Equation B 19 

In particular, to estimate  the  resultant  aberration,  we are interested in the  value  of 

w for z at the focus of the  lens, z = R(( 1 - D2/4R2)'I2 + l/(n - l)), and at twice the focal 

length away from  the lens' optical center, where x = R((l - D2/4R ) + 2/(n-I)). 2 112 

Next,  in decreasing order of complexity, we  deal  with  the case of the  plano-convex 

lens  with the ray incident on the spherical face. Again,  the  ray enters the lens at P, whose 

coordinates are (R - (R2 - h2)1/2), h), is refracted, and  emerges, refracted again, from the 

lens at Q, whose coordinates are (R - (R2 - D2/4)", k),  where k is to be determined. We 

seek relations in terms of given  R,  h,  and n for the values of k and  tan04 in the equation 

for the  line containing the ray emergent at Q, as follows 

w = k - (z - R + (R2 - D2/4)'")tane4. Equation B 20 

We are particularly interested in the values of w for w = W(n -1) (i. e., at the lens focus) 

and at w = 2W(n - 1) (i. e., at twice the focal distance). 

To determine k, from geometric considerations and noting from Figure 2 that 

8 3  = e&, we have 

that  is, 

h - k = ((R2 - h2)" - (R2 - D2/4)'")tane3 Equation B 21 

k = h - R((l - h /R ) - (1 - D2/4R2)'n)tan(8,-82) Equation B 22 2 2 112 
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Next, we seek  the slope, - tan& of the line containing the emergent ray from Q. 

From Figure B2, we see that  the angle e3 = e1-e2. Consequently, with Snell’s law, 

sinel = nsin02  and sine4 = nsine3  and  with sine, = h/R, we have 

tan04 = nsineJ/(l - n2sin2e3)li2 = nsin(~~-02)/(1 - n2sin2(~1-~2))1/2, 

Equation B 23 

where, as derived  earlier in the case of the  doubly  convex  lens in terms of given  R  and  h, 

sin (e,-e,) = (h/R)((I - h /n  R ) - (I/n)(l - h /R ) )) Equation B 24 2 2 2 112 2 2 1/2 

and 

cos(01-e2) = (1 - h /n R ) (1 - h /R ) ) + h2/nR2.  Equation B 25 2 2 2 112 2 2 112 

Therefore, at the focus,  where z = W(n - I), we  have 

w = ~1 = h - R( 1 - h2/R2)’I2 - (1 - D2/4R2)1R)tan(el-€12) 

- R((2 - n)/(n - 1) + (1 - D2/4R2)’”)tane4.  Equation B 26 

At a disance of twice the focal length, where z = 2W(n - l), we have 

w = w2 = h - R( 1 - h 2 /R 2 ) 112 - (1 - D2/4R2)’n)tan(81-82) 

- R((3 - n)/(n - 1) + (1 - D2/4R2)ln)tan04, Equation B 27 

formulas from which by direct calculations, one obtains numerical values for  the  desired 

quantities, given values of the parameters, R, D, h,  and  n. 
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Finally,  we  examine  the  simplest  case  of  the  three: a plano-convex  lens  with  the 

ray incident on the  plane  face. The ray is not  refracted  until it reaches  the  exit  point, Q, 

from  the  lens.  The  coordinates of Q are ((R2 - h2)”*, h). Referring to the  Figure  B3, we 

see that  we seek a relation in terms of the  given R, h, and n for  the slope, tan(Ol-e2), of 

the  line  for  the  emergent  ray,  as  follows 

w = h - ( Z  - (R2 - h2)”2)tan(82-81). Equation B 28 

Again,  with  the  Snell’ law relation,  sine2 = nsine,, sine1 = h/R, standard 

trigonometric  relations,  and a rationalization of a denominator, we have 

tan(e2-e1) = (h/R)[n(l - h /R ) - (1 -n h /R ) ] 

/[(l - n2h2/R2)ln) (1 - h /R ) ) + nh /R ] 

= (h/R)[n(l - n  h /R ) - (1 - h /R ) )I41 - (n2 + 1)h /R 1. 

2  2 ID 2 2  2 112 

2  2 112 2 2  

2  2 2 1 l 2  2 2 1n 2 2  

Equation B 29 

At the lens focal point 

z=R+W(n-l)=nR/(n-1)  Equation B 30 

and 

1 

n(l-nZhZR2)? - ( 1 -  h 
w = w ~ = ~ -  

1 - (nz + l)(hZ/RZ) 

- 
1 - (nz + l)(hZ/R’) 

I .  

Equation B 3 1 

At twice the focal distance 

z = R + 2 W ( n -   l ) = ( n +   l ) R / ( n -  1) Equation B 32 
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and 

I 

( n  - 1) - (I  - n( 1 - n’h’R’)i - ( 1  - h’R’)? 
cv = w, = i1- 

1 - (11’ + l)(h’/R’) 

- 
I 

n(l-n’h2/R’)i -(l-h’/R’)T 
- - 

1 - (n’ + 1)( h’/R’) 

Equation B 33 
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FIGURE CAPTIONS 

Figure 1 : Baseline  parallel  processor consists of three  3-port devices, two SLMs and  one 

CCD for output. 

Figure 2: A spatial light modulator representing a 256 X 256-bin register, with each bin 

capable of holding an 8-bit word. 

Figure 3: Gaussian distribution of a two-state system containing two different expectation 

values, 0 and 1. 

Figure 4: Probability  of error plotted as a function of Q. 

Figure 5: Aberration-induced displacement on a pixel. 

Figure 6: Aperture determination setup. 

Figure A. 1 : Schematic of ray P-Q-Q'-P' intersecting a lens at some distance, h, from its 

rim. 

Figure B. 1 : Symmetric double-convex lens. 

Figure B.2: Plano-convex lens with a ray incident on the convex face. 

Figure B.3: Plano-convex lens with a ray incident on the planar face. 
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TABLE CAPTIONS 

Table 1 : Baseline processor design differences by application. 

Table 3: Q, calculated as a function of the chosen n-bit grayscale for a setup where  the 

SLM noise is negligible compared to the other noise terms. 

Table 3: Offset aberration error due to lens (assuming a pixel pitch of 20 pm). 

Table 4: Systematic error sources. 
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Application 
Holographic  grating  to  reorder  output rows High Data  Rate  Routers 

Required BER Phase Modulation Input 

from initial input  order 1 0-9 

High Speed  Encryption 1 Encryption  key to scrambler  phase 
~~ ~~ ~~ ~~ ~ ~~~ ~~~ ~~ 
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I 1 I 4.1OE-07 I 4.42E-20 I 2.83E-17 I 3.62E-21 

2.05E-07 4.42E-20 

9.1 1 E-08 4.42E-20 

4.28E-08 4.42E-20 

1.42E- 1 8 9.06E-22 

2.96E-18 3.96E-23 

2.07E-08 4.42E-20 

1.02E-08 4.42E-20 

5.07E-09 4.42E-20 

1.43E-19 9.3OE-24 

3.50E-19 I 5.54E-25 

8 2.52E-09 . 4.42E-20 1.74E- 19 1.38E-25 5 
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Transverse Aberration at Transverse Aberration at 
Lens Type Focus (pm) Twice Focus (pm) 
Symmetric  Double  Convex 15  (-3/4  pitch  length) 17.3 (-718 pitch  length) 
Plano-Convex 
(Incident on convex  face) I 3.4  (-1/6  pitch  length)  -2.4 (-l/S pitch  length) 

Plano-Convex 
(Incident on planar-face) 2.7 (-1/7 pitch  length)  4.7  (-1/4 pitch length) 
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Magnitude of 
Error Source  Error Comments 

Error due to finite size of lens 
pupil 

Aperture stops 

Aberration error due to lens  in 
Pixel-to-pixel transforms 

Error due to fill factor of SLM 

Electro-Optical conversion 
sffect at the SLM 

Noise due to Stray Light 
sources 

Negligible 

Potentially 
negligible 

Varies with each 
pixel 

May  vary  with 
each pixel 

Likely largest 
systematic source 

Assumes lens diameter several 
times SLM, CCD diagonal 
dimensions 

Assumes optimum positioning of 
aperture 

Interacts with fill factor 

Interacts with and can be  used  to 
compensate for lens aberration 

Can be compensated through 
calibration 

Spatial hot spots; aperture stops 
and high quality optical elements 
reduce impact 
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